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Abstract 
In my project I studied A-infinity coalgebra structures, which are a topic in algebraic topology in 
mathematics. An A-infinity coalgebra is defined by a differential graded vector space, which in this case 
was an n-sided polygon, and a set of coassociators Δ2, Δ3,…$ that map elements of the vector space to 
tensor products. In order to meet the definition of an A-infinity coalgebra, each Δn must satisfy a relation 
derived from a chain map from associahedra. Since each relation involves all previous Δn’s, and since 
the relation must hold for all elements in the vector space, verifying that a particular set of coassociators 
meets the conditions of an A-infinity coalgebra can be difficult. Examples of such structures have been 
found before, but they have all required an infinite number of non-trivial Δn’s. In this project, we present 
the first known example of an A-infinity coalgebra that uses only a finite number of non-trivial Δn’s, and 
for which all other Δn’s vanish. 

	
	

		
Consider a polygon with n sides. 

Then each of the vertices, edges, and the 
single face of the polygon can be thought of 
as vectors with a dimension of zero, one, or 
two respectively, which we call the cellular 
chains of the polygon. We then define a 
boundary operator, ∂ which when applied to 
a vector gives its boundary (for example, 
applying ∂ to one of the edges would yield 
the two vertices that make up the ends of the 
edge). This boundary operator, along with 
the cellular chains of the polygon, define a 
differential graded vector space. 
 

Now once we have a differential 
graded vector space, we can proceed to 
define an operation which we will denote as 

Δ2. Δ2 can be thought of as a means of 
“factoring” a vector—specifically, applying 
Δ2 to any vector yields a tensor product of 
two vectors as a result. In a similar way, Δ3 
is defined to return a tensor product of three 
vectors, Δ4 at tensor product of four, and so 
on, and it is this sequence of Δn’s, along 
with the differential graded vector space, 
that define an A-infinity coalgebra structure. 
 

In order to actually form an A-
infinity coalgebra structure however, each 
Δn must obey a certain relation that arises 
from a chain map between the differential 
graded vector space and a sequence of 
geometrical objects called associahedra. 
Basically, there is a relation for each of the 
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Δn‘s, and each relation connects its 
particular Δn to all the other Δn‘s that came 
before. Intuitively, the relations can be 
thought of in the following manner. Suppose 
you took a random vector from the vector 
space (such as one of the edges), and first 
applied Δn to it, followed by ∂. Then 
suppose you applied ∂ followed by Δn. If the 
results are not equal, then pick any terms 
that differed and their sum will form one 
side of the equation. To calculate the other 
side, we do a similar thing with the rest of 
the lower Δn, except that the sum of their 
indexes have to equal on more than n. So for 
example, if the first side of the equation was 
based off of Δ6, then the other side would be 
formed from the terms generated by 
applying Δ2 followed by Δ5, applying Δ3 
followed by another Δ4, applying Δ4 
followed by Δ3, and applying Δ5 followed 
by Δ2. The reason for this is because Δ6 
produces a tensor product of six vectors, and 
so we must apply only sequences of lower 
Δn that give similar terms (for example, Δ5 
produces a tensor product of five vectors, 
and then Δ2 splits one of those into two, 
resulting in six vectors). Since associahedra 
help to keep track of all these combinations, 
defining the relations in terms of a chain 
map to the associahedra helps to write the 
equations in a compact form. 
 

The key component of these 
relations is that once a particular Δn is 
defined, more conditions and restrictions are 
imposed on the next Δn up. If a rule can be 
created that shows how to define each Δn so 
that all of the relations hold, then the result 
qualifies as an of A-infinity coalgebra 
structure. Currently, there are known 
examples of A-infinity coalgebra structures 
which meet these conditions, but that require 
an infinite number of Δn’s, since each is 
induced by the ones that came before it. My 
result is the first known example in which 
only n Δn are needed, and the rest could 

safely send everything to zero without 
messing up any of the relations. 
What I found most interesting about this 
project wasn’t so much the final result itself, 
but the journey that led to it. Originally my 
advisor, Dr. Ron Umble, and I were 
discussing a different topic altogether, and 
as an exercise I was asked to find the Δn 
operations for a particular polygon with a 
small number of sides. I was already given 
Δ2, which had been defined by another 
student of his several years back (Kravatz, 
2008), and so I only needed to find Δ3 and 
up. As I worked on the concrete example, I 
discovered a pattern in how each Δn could 
be defined, and speculated that the pattern 
could be generalized for a polygon of any 
number of sides. My advisor encouraged me 
to examine the topic further, and I set out to 
prove that my generalization did in fact hold 
for all polygons. 
 

Unfortunately, proving a result for a 
generic polygon was far more difficult. With 
a concrete number of sides, there are a finite 
number of relations to verify, and the 
process can be done by hand. As the number 
of sides increased, however, the 
computations became exponentially more 
numerous, and even with the help of a 
computer I was unable to directly verify the 
pattern for polygons with more than twenty 
sides. An added complication was that each 
additional side required the construction of 
an additional Δn, which in turned required 
verifying an additional, more complicated 
relation, and so in order to prove my result, I 
needed to somehow show that my pattern 
would always satisfy the relations without 
assuming anything about either the number 
of sides, or the number of relations being 
verified. 
 

Since this problem involved two 
unknowns (the number of sides and the 
number of relations), my advisor suggested 
approaching the problem through induction. 
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One option was to prove the first relation by 
hand for a generic number of sides, and then 
show that each of the other relations would 
follow from the last. Alternately, I could 
also prove all of the relations for a polygon 
of only a few sides, and then use induction 
to show that that a polygon with one more 
side would also satisfy the relations. Neither 
of these approaches were easy for me to 
follow, however, and so in the end I used an 
entirely different type of proof that didn’t 
rely on induction at all. 
 

In my approach, I first noted that the 
way I had defined my Δn‘s allowed each 
relation to be greatly simplified so that it 
depended only on the current Δn, the 
previous one, Δ2, and the boundary 
operator. Since each Δn when applied to a 
vector produced a tensor product of vectors, 
verifying the relations boiled down to 
somehow showing that all terms generated 
by these Δn on both sides of the equation 
canceled out. To do this, I studied the types 
of terms generated by each Δn, and 
discovered that they could each be divided 
into one of five classes based on certain 
characteristics of the tensor product. I then 
showed that the five classes canceled each 
other out, and thereby proved the relations 
without assuming anything about number of 
sides in the polygon, or the particular 
relation I had verified. This meant that the 
proof applied to all relations and polygons, 
which gave me my result. 
 

While the proof itself was a fun 
challenge that took me a while to properly 
iron out, I was still far from done. 
Throughout all my research, I had been 
making a simplifying assumption that I was 
working in mod two, which essentially 
meant that I could ignore signs. In order to 
make my result interesting to the rest of the 
mathematical world, however, I had to 
generalize my result to any field and show 
that I still had an A-infinity coalgebra 

structure even when I accounted for signs. 
While this required no major changes to the 
structure of my proof, it was still a rather 
tedious process to insert all the signs and 
make sure that the steps all worked out. I 
also proved a corollary in which I removed 
an assumption about the polygon that helped 
to fix how Δ2 was defined, and my advisor 
and I even discovered an application in 
which we were able to define an A-infinity 
coalgebra structure on Klein bottles and 
certain other topological surfaces that could 
be decomposed into polygons. 
 

Despite the progress we were able to 
make in this field, there is still much to do 
that could expand on this project. For one, 
the particular A-infinity coalgebra structure 
I defined was fairly easy to work with 
because each of the relations simplified to 
depend only on a few of the Δn, and so it 
would be interesting to see another example 
where each relation made use of all the Δn 
before it. Additionally, I used a very simple 
differential graded vector space with only 
one two-dimensional face and no vectors of 
any higher dimension. It would be 
particularly interesting to see an example of 
an A-infinity coalgebra structure defined 
using a three-dimensional solid or higher. 
 

In conclusion, my advisor and I were 
rewarded with seeing the first example of an 
A-infinity coalgebra structure with a finite 
number of non-vanishing Δn’s. This result 
has still undiscovered applications in 
topology, utilized an unconventional proof 
technique, and serves to further illustrate the 
beautiful patterns and connections that arise 
in the world of mathematics. While the 
result itself is only defined for a very simple 
type of graded vector space, it could very 
well serve as the first step in a long chain of 
further discoveries and generalizations in 
this area, which will no doubt continue to 
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impact and provide meaningful applications 
to its field. 
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