

Training AI Agents to Play a Tower Defense Game

Using Reinforcement Learning
Mitchell Harrison, Jonathan Rivera, and Justin Stevens

Abstract
This paper presents our efforts in training artificial intelligence (AI) agents to play a tower defense game

using reinforcement learning (RL). We developed a tower defense game within the Unity Game Engine

and used the Proximal Policy Optimization (PPO) RL algorithm to train the AI. Our goal was to enable
the AI to play the game at or above the level of a human player. We encountered challenges from the

complexity of our game and the training process. However, we still made noteworthy progress in
optimizing the AI's performance.

Introduction

 The tower defense genre, such as the

games in the Bloons Tower Defense (BTD)

series, poses interesting challenges for AI

training. An AI in this genre must keep track

of a large amount of data related to the game

and must make numerous decisions in a brief

time span. These decisions include which

towers to place, where to place them, and

deciding between various tower upgrades.

Our project aimed to recreate a tower defense

game, BTD, in a video game creation

software called Unity and train an AI by

allowing it to play the game and rewarding it

based on the effectiveness of the decisions it

makes. Within the realm of reinforcement

learning, there are a variety of algorithms that

can be utilized. For our project, we decided

to use the PPO algorithm due to its suitability

for addressing infrequent reward

environments, which are common in tower

defense games.

Building A Test Environment for the AI

Figure 1: In game screenshot of our game

In our tower defense game, seen in

Figure 1, players strategically place

defensive towers which look like monkeys

from BTD. These towers are used to defend

off waves of enemies called bloons, due to

their appearance that mimics a balloon, that

follow a path. We chose to randomly generate

the map layout for each game session to

enhance variability and increase the

challenge for the AI. The Unity Game Engine

Training AI Agents to Play a Tower Defense Game Using Reinforcement Learning 2

allowed us to develop a dynamic

environment for our AI to train in.

Building an Intelligent Agent

Developing an intelligent AI capable

of effectively playing our game required the

use of three related technologies. First was

the integration of the ML-Agents library into

our game. ML-Agents enables seamless

interaction between the game environment

and an RL framework. Importantly, it allows

us to create multiple instances of the AI

playing the game simultaneously, but in

different environments, making the training

of the agents much faster.

The second technology we utilized

was RL. The key idea of RL is training an

agent to make good decisions by rewarding

it or punishing it based on an action or series

of actions. The AI agent learns to make

better decisions over time by choosing

actions that have previously given it a

reward. Since this process relies heavily on

rewards and punishments, developing an

effective reward structure is crucial to

guiding the learning process for desirable

behaviors.

This is where the third technique of

using a specific RL algorithm called PPO

came into our AI’s development. PPO

operates by adjusting the AI's decision-

making strategies using what is called policy

gradients, a form of complex mathematics

used with three dimensional or higher data

to search for better actions. These

adjustments attempt to make the biggest

improvement in the agent possible without

forgetting previously learned information.

Training the AI

Training the AI agents was a multi-

stage process. We began with one AI agent to

ensure it was working properly. Once we

confirmed that it was working properly, we

increased the number of agents to 51, thus

allowing the AI to train 51 times faster.. Once

this change was made, we began fine-tuning

the reward structure and other variables that

influence the agents to achieve a desirable

result.

Figure 2: Showing off 9 of the 51 agents training at

the same time

To further increase the intelligence

and efficiency of our AI, we employed

various optimization techniques, which

included curriculum learning, reward

shaping, and policy entropy regularization.

Curriculum learning involves gradually

increasing the complexity of training

scenarios, allowing the AI agent to learn

progressively more challenging strategies.

This involved changing the number of towers

it could choose from and allowing the agent

to play on a larger map. Reward shaping

involves fine-tuning the strength of each

reward or punishment to provide the AI with

better feedback. Policy entropy

regularization helped prevent our AI

becoming stagnant as it promotes continual

learning improvement. It encouraged the AI

to explore its options and strategies, ensuring

that its decision-making remains diverse.

Results

Through multiple rounds of training,

encompassing over 250 hours of training, we

witnessed substantial progress in the

performance of our AI agents. With our

continuous improvements to the AI after each

training session, the AI was able to reach a

further wave each time seen in Figure 3. This

Training AI Agents to Play a Tower Defense Game Using Reinforcement Learning 3

progress was theorized to be closely tied to

our strategic adjustments, particularly in

refining the reward system and initially

restricting the AI's interaction with various

game mechanics. These modifications not

only boosted the AI's overall performance but

also significantly enhanced its learning rate.

 Figure 3: Graph showing that as more actions take

place, higher waves are reached

Conclusion

Our research demonstrates the

potential of utilizing reinforcement learning

to train AI agents for complex gaming

environments like tower defense games.

Despite the many challenges that we faced,

we made noteworthy progress in optimizing

AI performance. Although our AI has not

surpassed the level of a human, we plan to

make more improvements until it does.

