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Abstract 
This paper presents our efforts in training artificial intelligence (AI) agents to play a tower defense game 

using reinforcement learning (RL). We developed a tower defense game within the Unity Game Engine 

and used the Proximal Policy Optimization (PPO) RL algorithm to train the AI. Our goal was to enable 
the AI to play the game at or above the level of a human player. We encountered challenges from the 

complexity of our game and the training process. However, we still made noteworthy progress in 
optimizing the AI's performance.  

 
 

Introduction     

  The tower defense genre, such as the 

games in the Bloons Tower Defense (BTD) 

series, poses interesting challenges for AI 

training. An AI in this genre must keep track 

of a large amount of data related to the game 

and must make numerous decisions in a brief 

time span. These decisions include which 

towers to place, where to place them, and 

deciding between various tower upgrades. 

Our project aimed to recreate a tower defense 

game, BTD, in a video game creation 

software called Unity and train an AI by 

allowing it to play the game and rewarding it 

based on the effectiveness of the decisions it 

makes. Within the realm of reinforcement 

learning, there are a variety of algorithms that 

can be utilized. For our project, we decided 

to use the PPO algorithm due to its suitability 

for addressing infrequent reward 

environments, which are common in tower 

defense games.  

Building A Test Environment for the AI 

  

 
Figure 1: In game screenshot of our game 

 

In our tower defense game, seen in 

Figure 1, players strategically place 

defensive towers which look like monkeys 

from BTD. These towers are used to defend 

off waves of enemies called bloons, due to 

their appearance that mimics a balloon, that 

follow a path. We chose to randomly generate 

the map layout for each game session to 

enhance variability and increase the 

challenge for the AI. The Unity Game Engine 
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allowed us to develop a dynamic 

environment for our AI to train in.  

 

Building an Intelligent Agent 

Developing an intelligent AI capable 

of effectively playing our game required the 

use of three related technologies. First was 

the integration of the ML-Agents library into 

our game. ML-Agents enables seamless 

interaction between the game environment 

and an RL framework. Importantly, it allows 

us to create multiple instances of the AI 

playing the game simultaneously, but in 

different environments, making the training 

of the agents much faster.   

The second technology we utilized 

was RL. The key idea of RL is training an 

agent to make good decisions by rewarding 

it or punishing it based on an action or series 

of actions. The AI agent learns to make 

better decisions over time by choosing 

actions that have previously given it a 

reward.  Since this process relies heavily on 

rewards and punishments, developing an 

effective reward structure is crucial to 

guiding the learning process for desirable 

behaviors.   

This is where the third technique of 

using a specific RL algorithm called PPO 

came into our AI’s development. PPO 

operates by adjusting the AI's decision-

making strategies using what is called policy 

gradients, a form of complex mathematics 

used with three dimensional or higher data 

to search for better actions. These 

adjustments attempt to make the biggest 

improvement in the agent possible without 

forgetting previously learned information.  

 

Training the AI 

Training the AI agents was a multi-

stage process. We began with one AI agent to 

ensure it was working properly. Once we 

confirmed that it was working properly, we 

increased the number of agents to 51, thus 

allowing the AI to train 51 times faster.. Once 

this change was made, we began fine-tuning 

the reward structure and other variables that 

influence the agents to achieve a desirable 

result. 

 

 
Figure 2: Showing off 9 of the 51 agents training at 

the same time 

 

To further increase the intelligence 

and efficiency of our AI, we employed 

various optimization techniques, which 

included curriculum learning, reward 

shaping, and policy entropy regularization. 

Curriculum learning involves gradually 

increasing the complexity of training 

scenarios, allowing the AI agent to learn 

progressively more challenging strategies. 

This involved changing the number of towers 

it could choose from and allowing the agent 

to play on a larger map. Reward shaping 

involves fine-tuning the strength of each 

reward or punishment to provide the AI with 

better feedback. Policy entropy 

regularization helped prevent our AI 

becoming stagnant as it promotes continual 

learning improvement. It encouraged the AI 

to explore its options and strategies, ensuring 

that its decision-making remains diverse.   

 

Results 

Through multiple rounds of training, 

encompassing over 250 hours of training, we 

witnessed substantial progress in the 

performance of our AI agents. With our 

continuous improvements to the AI after each 

training session, the AI was able to reach a 

further wave each time seen in Figure 3. This 
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progress was theorized to be closely tied to 

our strategic adjustments, particularly in 

refining the reward system and initially 

restricting the AI's interaction with various 

game mechanics. These modifications not 

only boosted the AI's overall performance but 

also significantly enhanced its learning rate. 

  Figure 3: Graph showing that as more actions take 

place, higher waves are reached 

 

Conclusion 

Our research demonstrates the 

potential of utilizing reinforcement learning 

to train AI agents for complex gaming 

environments like tower defense games. 

Despite the many challenges that we faced, 

we made noteworthy progress in optimizing 

AI performance. Although our AI has not 

surpassed the level of a human, we plan to 

make more improvements until it does. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


